32-bit Proprietary Microcontrollers

CMOS

FR30 MB91F158

MB91F158

■ DESCRIPTION

The MB91F158 is a microcontroller for CD/DVD using a RISC-CPU (FR 30 series) as its core.

FEATURES

1. CPU

- 32-bit RISC (FR30) , load/store architecture, 5 -stage pipeline
- General-purpose registers : 32 bits $\times 16$
- 16-bit fixed-length instructions (basic instructions), 1 instruction/ 1 cycle
- Memory-to-memory transfer, bit processing, barrel shift processing : Optimized for embedded applications
- Function entrance/exit instructions, and multiple load/store instructions of register contents, instruction systems supporting high level languages
- Register interlock functions, efficient assembly language description
- Branch instructions with delay slots : Reduced overhead time in branching executions
- Internal multiplier/supported at instruction level

Signed 32-bit multiplication : 5 cycles Signed 16 -bit multiplication: 3 cycles

- Interrupt (PC and PS saving) : 6 cycles, 16 priority levels
- Support for little endian mode

2. Bus Interface

- 24-bit address output, $8 / 16$-bit data input and output
- Basic bus cycle : 2-clock cycle
- Support for interface for various types of memory
- Unused data/address pins can be configured us input/output ports
- Support for little endian mode

PACKAGE

(FPT-120P-M05)

MB91F158

3. Internal ROM

FLASH products : 510 Kbytes
4. Internal RAM

2 Kbytes
5. Internal Data RAM

6 Kbytes
6. Bit Search Module

Searches in one cycle for the position of the bit that changes from the MSB in one word to the initial I/O.

7. Timers

- 16 -bit OCU $\times 4$ channels, ICU $\times 4$ channels, Free-run timer $\times 1$ channel
- $8 / 16$-bit up/down timer/counter (8 -bit $\times 2$ channels or 16 -bit $\times 1$ channel)
- 16 -bit PPG timer $\times 4$ channels. The output pulse cycle and duty can be varied as desired
- 16 -bit reload timer $\times 2$ channels

8. D/A Converter

- 8 -bit $\times 3$ channels

9. A/D Converter (Sequential Comparison Type)

- 10 -bit $\times 8$ channels
- Sequential conversion method (conversion time : $5.2 \mu \mathrm{~s} @ 32 \mathrm{MHz}$)
- Single conversion or scan conversion can be selected, and one-shot or continuous or stop conversion mode can be set respectively.
- Conversion starting function by hardware/software.

10. Serial I/O

- UART $\times 2$ channels. Any of them is capable of serial transfer in sync with clock attached with the LSB/MSB switching function.
- Serial data output and serial clock output are selectable by push-pull/open drain software.
- A 16-bit timer (U-timer) is contained as a dedicated baud rate generator allowing any baud rate to be generated.

11. Clock Switching Function

- Gear function : Operating clock ratios to the basic clock can be set independently for the CPU and peripherals from four types, $1: 1,1: 2,1: 4$ or $1: 8$.

12. Interrupt Controller

External interrupt input (16 channels in total) :

- Allows the rising edge/falling edge/H level/L level to be set.

Internal interrupt factors :

- Interrupt by resources and delay interrupt

13. Others

- Reset cause : Power on reset/watchdog timer/software reset/external reset
- Low power consumption mode : Sleep/stop
- Package : 120-pin LQFP
- CMOS technology ($0.35 \mu \mathrm{~m}$)
- Power supply voltage : 3.2 V to 3.5 V
- Operation frequency upper limit

CPU : 32 MHz
Peripheral circuit : 32 MHz
External bus : 25 MHz

PIN ASSIGNMENT

(FPT-120P-M05)

■ PIN DESCRIPTION

Pin No.	Pin name	Circuit type	Function
1	D16/P20	C	Bit 16 to bit 23 of external data bus These pins are enabled only in 16-bit external bus mode. These pins are available as ports in single-chip and 8-bit external bus modes.
2	D17/P21		
3	D18/P22		
4	D19/P23		
5	D20/P24		
6	D21/P25		
7	D22/P26		
8	D23/P27		
9	D24/P30	C	Bit 24 to bit 31 of external data bus These pins are available as ports in single-chip mode.
10	D25/P31		
11	D26/P32		
12	D27/P33		
13	D28P34		
14	D29/P35		
15	D30/P36		
16	D31/P37		
17	A00/P40	F	Bit 0 to bit 15 of external address bus These pins are enabled in external bus mode. These pins are available as ports in single-chip mode.
20	A01/P41		
21	A02/P42		
22	A03/P43		
23	A04/P44		
24	A05/P45		
25	A06/P46		
26	A07/P47		
28	A09/P51		
29	A10/P52		
30	A11/P53		
31	A12/P54		
32	A13/P55		
33	A14/P56		
34	A15/P57		
35	A16/P60	0	Bit 16 to bit 23 of external address bus These pins are available as ports when the address bus is not in use.
36	A17/P61		
37	A18/P62		
38	A19/P63		
39	A20/P64		
40	A21/P65		
41	A22/P66		
42	A23/P67		
45	RDY/P80	C	External RDY input
			This function is enabled when external RDY input is allowed.
			Input " 0 " when the bus cycle being executed does not end. This pin is available as a port when external RDY input is not in use.

(Continued)

Pin No.	Pin name	Circuit type	Function
46	$\overline{\text { BGRNT/P81 }}$	F	External bus release acceptance output This function is enabled when external bus release acceptance output is allowed. Output "L" upon releasing of the external bus. This pin is available as a port when external bus release acceptance output is not allowed.
47	BRQ/P82	C	External bus release request input This function is enabled when external bus release request input is allowed. Input " 1 " when the release of the external bus is desired. This pin is available as a port when external bus release request input is not in use.
48	$\overline{\mathrm{RD}} / \mathrm{P} 83$	F	External bus read strobe output This function is enabled when external bus read strobe output is allowed. This pin is available as a port when external bus read strobe output is not allowed.
49	$\overline{\text { WR0/P84 }}$	F	External bus write strobe output This function is enabled in external bus mode. This pin is available as a port in single chip mode.
50	$\overline{\text { WR1/P85 }}$	F	External bus write strobe output This function is enabled in external bus mode when the bus width is 16 bits. This pin is available as a port in single chip mode or when the external bus width is 8 bits.
51	CLK/P86	F	System clock output The pin outputs the same clock as the external bus operating frequency. The pin is available as a port when it is not used to output the clock.
$\begin{aligned} & 52 \\ & 53 \\ & 54 \end{aligned}$	$\begin{aligned} & \text { MD2 } \\ & \text { MD1 } \\ & \text { MD0 } \end{aligned}$	G	Mode pins To use these pins, connect them directly to either Vcc or Vss. Use these pins to set the basic MCU operating mode.
55	RST	B	External reset input
$\begin{aligned} & 57 \\ & 58 \end{aligned}$	$\begin{aligned} & \text { X1 } \\ & \text { X0 } \end{aligned}$	A	High-speed clock oscillation pins
$\begin{aligned} & 60 \\ & 61 \\ & 62 \\ & 63 \end{aligned}$	INTO/PCO INT1/PC1 INT2/PC2 INT3/PC3	H	External interrupt request input 0-3 Since this input is used more or less continuously when the corresponding external interrupt is allowed, output by the port needs to be stopped except when it is performed deliberately. Since this port is allowed to input also in standby mode, it can be used to reset the standby state. These pins are available as ports when external interrupt request input is not in use.

(Continued)

Pin No.	Pin name	Circuit type	Function
$\begin{aligned} & 64 \\ & 65 \\ & 66 \\ & 67 \end{aligned}$	INT4/PC4/CS0 INT5/PC5/CS1 INT6/PC6/CS2 INT7/PC7/CS3	H	These pins also serve as the chip select output and external interrupt request input 4-7. When the chip select output is not allowed, these pins are available as external interrupt requests or ports. Since this input is used more or less continuously when the corresponding external interrupt is allowed, output by the port needs to be stopped except when it is performed deliberately. Since this port is also allowed to input in standby mode, the port can be used to reset the standby state. These pins are available as ports when external interrupt request input and chip select output are not in use.
$\begin{aligned} & 68 \\ & 69 \\ & 70 \\ & 71 \\ & 72 \\ & 73 \end{aligned}$	PDO/AIN0/INT8/TRG0 PD1/BIN0/INT9/TRG1 PD2/AIN1/INT10/TRG2 PD3/BIN1/INT11/TRG3 PD4/ZINO/INT12 PD5/ZIN1/INT13	H	External interrupt request input 8-13 Since this input is used more or less continuously when the corresponding external interrupt is allowed, output by the port needs to be stopped except when it is performed deliberately. [AIN, BIN] Up/down timer input. [TRG] PPG external trigger input. Since this input is used more or less continuously while input is allowed, output by the port needs to be stopped except when it is performed deliberately. These pins are available as ports when the external interrupt request input, up timer counter input, and PPG external trigger input are not in use.
74	PD6/INT14	H	External interrupt request input 14 Since this input is used more or less continuously when the corresponding external interrupt is allowed, output by the port needs to be stopped except when it is performed deliberately.
75	PD7/ATG/INT15	H	External interrupt request input 15 Since this input is used more or less continuously when the corresponding external interrupt is allowed, output by the port needs to be stopped except when it is performed deliberately. [$\overline{\mathrm{ATG}}$] A/D converter external trigger input Since this input is used more or less continuously when selected as an A/D activation factor, output by the port needs to be stopped except when it is performed deliberately. This pin is available as a port when it is not in use as the external interrupt request input or DMA external transfer end output.
$\begin{aligned} & 78 \\ & 79 \\ & 80 \\ & 81 \end{aligned}$	$\begin{aligned} & \text { PE0 } \\ & \text { PE1 } \\ & \text { PE2 } \\ & \text { PE3 } \end{aligned}$	F	General-purpose I/O ports
$\begin{aligned} & 82 \\ & 83 \\ & 84 \\ & 85 \end{aligned}$	$\begin{aligned} & \hline \text { PE4/OC4 } \\ & \text { PE5/OC5 } \\ & \text { PE6/OC6 } \\ & \text { PE7/OC7 } \end{aligned}$	F	Output compare output These pins are available as ports when output compare output is not allowed.

(Continued)

Pin No.	Pin name	Circuit type	Function
$\begin{aligned} & 86 \\ & 87 \\ & 88 \\ & 89 \end{aligned}$	$\begin{aligned} & \hline \text { PF0/IN0 } \\ & \text { PF1/IN1 } \\ & \text { PF2/IN2 } \\ & \text { PF3/IN3 } \end{aligned}$	F	Input capture input This function is enabled when the input capture operation is input. These pins are available as ports when input capture input is not in use.
90	PF4	F	General purpose I/O port
$\begin{aligned} & 91 \\ & 92 \\ & 93 \\ & 94 \end{aligned}$	PGO/PPGO PG1/PPG1 PG2/PPG2 PG3/PPG3	F	PPG timer output This function is enabled when PPG timer output is allowed. These pins are available as ports when PPG timer output is not allowed.
97	PI2/SCK2/TO2	P	UART2 clock I/O, Reload timer 2 output When UART2 clock output is not allowed, reload timer 2 can be output by allowing it. This pin is available as a port when neither UART2 clock output nor reload timer output is allowed.
98	Pl1/SOT2	P	UART2 data output This function is enabled when UART2 data output is allowed. This pin is available as a port when UART2 clock output is not allowed.
99	PI0/SIN2	P	UART2 data input Since this input is used more or less continuously while UART2 is engaged in input operations, output by the port needs to be stopped except when it is performed deliberately. This pin is available as a port when UART2 data input is not in use.
100	PH2/SCK0/TO0	P	UART0 clock I/O, Reload timer 0 output When UART0 clock output is not allowed, reload timer 0 can be output by allowing it. This pin is available as a port when neither UART0 clock output nor reload timer output is allowed.
101	PH1/SOT0	P	UARTO data output This function is enabled when UARTO data output is allowed. This pin is available as a port when UARTO clock output is not allowed.
102	PHO/SINO	P	UARTO data input Since this input is used more or less continuously while UARTO is engaged in input operations, output by the port needs to be stopped except when it is performed deliberately. This pin is available as a port when UARTO data input is not in use.
103	SSEL	G	Sector mode switching pin of FLASH This pin should be connected to V_{cc} or V_{ss}.
$\begin{aligned} & 104 \\ & 105 \\ & 106 \end{aligned}$	$\begin{aligned} & \text { DA2 } \\ & \text { DA1 } \\ & \text { DA0 } \end{aligned}$	-	D/A converter output This function is enabled when D/A converter output is allowed.
107	DAVS	-	Power supply pin for D/A converter
108	DAVC	-	Power supply pin for D/A converter
109	AVCC	-	Vcc power supply pin for A/D converter

(Continued)

MB91F158

(Continued)

Pin No.	Pin name	$\begin{gathered} \text { Circuit } \\ \text { type } \end{gathered}$	Function
110	AVRH	-	A/D converter reference voltage (high potential side) Be sure to turn on/off this pin with potential higher than AVRH applied to Vcc.
111	AVRL	-	A/D converter reference voltage (low potential side)
112	AVSS	-	Vss pin for A/D converter.
$\begin{aligned} & \hline 113 \\ & 114 \\ & 115 \\ & 116 \\ & 117 \\ & 118 \\ & 119 \\ & 120 \end{aligned}$	ANO/PKO AN1/PK1 AN2/PK2 AN3/PK3 AN4/PK4 AN5/PK5 AN6/PK6 AN7/PK7	N	A/D converter analog input These pins are enabled when the AIC register is designated for analog input. These pins are available as ports when A/D converter analog input is not in use.
$\begin{gathered} 19,44, \\ 56,77, \\ 95 \end{gathered}$	Vcc	-	Power supply pin (V_{cc}) for digital circuit Always power supply pin (V_{cc}) must be connected to the power supply.
$\begin{gathered} \hline 18,43, \\ 59,76, \\ 96 \end{gathered}$	Vss	-	Earth level (Vss) for digital circuit Always power supply pin (Vss) must be connected to the power supply.

Note : On the majority of pins listed above, the I/O port and the resource I/O are multiplexed, such as XXXX/Pxx. When the port and the resource output compete against each other on these pins, priority is given to the resource.

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- High-speed oscillation circuit Oscillation feedback resistor $=$ approx. $1 \mathrm{M} \Omega$
B		- CMOS hysteresis input pin CMOS hysteresis input (standby control not attached) Pullup resistor
C		- CMOS level I/O pin CMOS level output CMOS level input (attached with standby control) $\mathrm{loL}=4 \mathrm{~mA}$
F		- CMOS hysteresis I/O pin CMOS level output CMOS hysteresis input (attached with standby control) $\mathrm{loL}=4 \mathrm{~mA}$

(Continued)

Type	Circuit	Remarks
G		- CMOS level input pin CMOS level input (standby control not attached)
H		- CMOS hysteresis I/O pin with pullup control CMOS level output CMOS level input (standby control not attached) Pullup resistance $=$ approx. $50 \mathrm{k} \Omega$ (Typ) $\mathrm{loL}=4 \mathrm{~mA}$
N		- Analog/CMOS level I/O pin. CMOS level output CMOS level input (attached with standby control) Analog input (Analog input is enabled when AIC's corresponding bit is set to " 1. ") $\mathrm{loL}=4 \mathrm{~mA}$

(Continued)
(Continued)

Type	Circuit	Remarks
0		- CMOS hysteresis I/O pin with pullup control CMOS level output CMOS hysteresis input (attached with standby control) Pullup resistance $=$ approx. $50 \mathrm{k} \Omega$ (Typ) $\mathrm{loL}=4 \mathrm{~mA}$
P		- CMOS hysteresis I/O pin with pullup control. CMOS level output (attached with open drain control) CMOS hysteresis input (attached with standby control) Pullup resistance $=$ approx. $50 \mathrm{k} \Omega$ (Typ) $\mathrm{loL}=4 \mathrm{~mA}$

HANDLING DEVICES

1. Preventing Latchup

In CMOS ICs, applying voltage higher than V_{cc} or lower than $\mathrm{V}_{\text {ss }}$ to input/output pin or applying voltage over rating across $\mathrm{Vcc}_{\text {co }}$ and V ss may cause latchup.
This phenomenon rapidly increases the power supply current, which may result in thermal breakdown of the device. Make sure to prevent the voltage from exceeding the maximum rating.

2. Treatment of Pins

- Treatment of unused pins

Unused pins left open may cause malfunctions. Make sure to connect them to pull-up or pull-down resistors.

- Treatment of open pins

Be sure to use open pins in open state.

- Treatment of output pins

Shortcircuiting an output pin with the power supply or with another output pin or connecting a large-capacity load may causes a flow of large current. If this conditions continues for a lengthy period of time, the device deteriorates. Take great care not to exceed the absolute maximum ratings.

- Mode pins (MDO-MD2)

These pins should be used directly connected to either Vcc or Vss. In order to prevent noise from causing accidental entry into test mode, keep the pattern length as short as possible between each mode pin and Vcc or $V_{s s}$ on the board and connect them with low impedance.

- Power supply pins

When there are several $V_{c c}$ and $V_{s s}$ pins, each of them is equipotentially connected to its counterpart inside of the device, minimizing the risk of malfunctions such as latch up. To further reduce the risk of malfunctions, to prevent EMI radiation, to prevent strobe signal malfunction resulting from creeping-up of ground level and to observe the total output current standard, connect all V_{cc} and V_{ss} pins to the power supply or GND.
It is preferred to connect V_{cc} and V_{ss} of MB91F158 to power supply with minimal impedance possible.
It is also recommended to connect a ceramic capacitor as a bypass capacitor of about $0.1 \mu \mathrm{~F}$ between V_{cc} and Vss at a position as close as possible to MB91F158.

- Crystal oscillator circuit

Noises around X0 and X1 pins may cause malfunctions of MB91F158. In designing the PC board, layout X0, X 1 and crystal oscillator (or ceramic oscillator) and bypass capacitor for grounding as close as possible.

It is strongly recommended to design PC board so that X 0 and X 1 pins are surrounded by grounding area for stable operation.
The MB91F158 device do not contain a feedback resistor. To use the clock function, you need to connect an external resistor.

3. Precautions

- External Reset Input

It takes at least 5 machine cycle to input " L " level to the $\overline{R S T}$ pin and to ensure inner reset operation properly.

- External Clocks

When using an external clock, normally, a clock of which the phase is opposite to that of X0 must be supplied to the X0 and X1 pins simultaneously. However, when using the clock along with STOP (oscillation stopped) mode, the X 1 pin stops when " H " is input in STOP mode. To prevent one output from competing against another, an external resistor of about $1 \mathrm{k} \Omega$ should be provided.

The following figure shows an example usage of an external clock.
Figure 3.1 An example usage of an external clock

- Care during operating of PLL clock mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

- Watchdog timer function

The watchdog timer supported by the FR family monitors the program that performs the reset delay operation for a specified time. If the program hangs and the reset delay operation is not performed, the watchdog timer resets the CPU. Therefore, once the watchdog timer is enabled, operation continues until the CPU is reset. As an exception, a reset delay automatically occurs if the CPU stops program execution. For the conditions that apply to this exception, refer to the section that describes the watchdog function.

4. Care During Powering Up

- When powering up

When turning on the power supply, never fail to start from setting the RST pin to "L" level. And after the power supply voltage goes to Vcc level, at least after ensuring the time for 5 machine cycle, then set to "H" level.

- Source oscillation input

At turning on the power supply, never fail to input the clock before cancellation of the oscillation stabilizing waiting.

- Power on resetting

When powering up or when turning the power back on after the supply voltage drops below the operation assurance range, be sure to reset the power.

- Power on sequence

Turn on the power in the order of $\mathrm{V}_{\mathrm{cc}}, \mathrm{AV}$ cc and AVRH . The power should be disconnected in inverse order.

- Even when an A/D converter is not in use, connect AVcc to the Vcc level and AVss to the Vss level.
- Even when a D/A converter is not in use, connect DAVC to the Vcc level and DAVS to the Vss level.

MB91F158

BLOCK DIAGRAM

- MB91F158

■ CPU CORE

1. Memory Space

The FR family has a logical address space of 4 Gbytes (2^{32} bytes) and the CPU linearly accesses the memory space.

- Direct addressing area

The following area in the address space is used for I/O.
This area is called direct addressing area and an operand address can be specified directly in an instruction. The direct addressing area varies with the data size to be accessed as follows :
$\begin{array}{ll}\rightarrow \text { byte data access: } & 0-0 F_{H} \\ \rightarrow \text { half word data access: } & 0-1 F_{H} \\ \rightarrow \text { word data access: } & 0-3 F_{H}\end{array}$
2. Memory Map

Note: External areas are not accessible in single-chip mode.

MB91F158

3. Registers

The family of FR microcontrollers has two types of registers : the registers residing in the CPU which are dedicated to applications and the general-purpose registers residing in the memory.

- Dedicated registers :

Program counter (PC) : A 32-bit register to indicate the location where an instructions is stored.
Program status (PS) : A 32-bit register to store a register pointer or a condition code.
Tablebase register (TBR) : Holds the vector table lead address used when EIT (exceptions/interrupt/ trap) is processed.
Return pointer (RP)
: Holds the address to return from a subroutine to.
System stack pointer (SSP) : Points to the system stack space.
User stack pointer (USP) : Points to the user stack space.
Multiplication and division result register (MDH/MDL) : A 32-bit multiplication and division register.

- Program status (PS)

The PS register holds program status and is further divided into three registers which are a Condition Code Register (CCR) , a System condition Code Register (SCR) , and an Interrupt Level Mask register (ILM) .

MB91F158

- Condition Code Register (CCR)

S flag : Designates the stack pointer for use as R15.
I flag : Controls enabling and disabling of user interrupt requests.
N flag : Indicates the sign when arithmetic operation results are considered to be an integer represented by 2's complement.
Z flag : Indicates if arithmetic results were "0."
V flag : Considers the operand used for an arithmetic operation to be an integer represented by 2's complement and indicates if the operation resulted in an overflow.
C flag : Indicates whether or not an arithmetic operation resulted in a carry or a borrow from the most significant bit.

- System condition Code Register (SCR)

T flag : Designates whether or not to enable step trace trap.

- Interrupt Level Mask register (ILM)

ILM4 to ILM0 : Holds an interrupt level mask value to be used for level masking.
An interrupt request is accepted only if the corresponding interrupt level among interrupt requests input to the CPU is higher than the value indicated by the ILM register.

ILM4	ILM3	ILM2	ILM1	ILM0	Interrupt level	High-Low
0	0	0	0	0	0	Higher Lower
\vdots 0					!	
0	1	0	0	0	15	
		!			!	
1	1	1	1	1	31	

MB91F158

- GENERAL-PURPOSE REGISTERS

General-purpose registers are CPU registers R0 through R15 and used as accumulators during various operations and as memory access pointers (fields indicating addresses).

- Register Bank Configuration

Of the 16 general-purpose registers, the following registers are assumed for specific applications. For this reason, some instructions are enhanced.

R13: Virtual accumulator (AC)
R14 : Frame pointer (FP)
R15: Stack pointer (SP)
Initial values to which R0 through R14 are reset are not defined. The initial value of R15 is 0000 0000н (the SSP value).

SETTING MODE

1. Mode Pins

As shown in Table 1 three pins, MD2, 1, and 0 are used to indicate an operation.
Table 1 Mode pins and set modes

Mode pin			Mode name	Reset vector access area	External data bus width	
MD2	MD1	MDO				
0	0	0	External vector mode 0	External	8 bits	External ROM bus mode
0	0	1	External vector mode 1	External	16 bits	External ROM bus mode
0	1	0	External vector mode 2	External	32 bits	Not available on this product type
0	1	1	External vector mode	Internal	(Mode register)	Single-chip mode
1	-	-	-	-	-	Not available

2. Mode Data

The data which the CPU writes to "0000 07FFh" after reset is called mode data.
It is the mode register (MODR) that exists at "0000 07FFн." Once a mode is set in this register, operations will take place in that mode. The mode register can be written only once after reset.
The mode specified in the register is enabled immediately after it is written.

[bits 7 and 6] : M1, M0
These are bus mode setting bits. Specify the bus mode to be set to after writing to the mode register.

M1	M0	Function	Remarks
0	0	Single-chip mode	
0	1	Internal ROM-external bus mode	
1	0	External ROM-external bus mode	
1	1	-	Setting not allowed

[bits 5 to 0] : *
These bits are reserved for the system.
" 0 " should be written to these bits at all times.

MB91F158

[Precautions When Writing to the MODR]

Before writing to the MODR, be sure to set AMDO through 5 and determine the bus width in each CS (Chip Select) area.
The MODR does not have bus width setting bits.
The bus width value set with mode pins MD2 through 0 is enabled before writing to the MODR and the bus width value set with BW1 and 0 of AMD0 through 5 is enabled after writing to the MODR.
For example, the external reset vector is normally executed with area 0 (the area where CSO is active) and the bus width at that time is determined by pins MD 2 through 0 . Suppose that the bus width is set to 32 or 16 bits in MD2 though 0 but no value is specified in AMD 0 . If the MODR is written in this state, area 0 then switches to 8 -bit bus mode and operates the bus since the initial bus width in AMDO is set to 8 bits. This causes a malfunction.
In order to prevent this type of problem, AMD0 through 5 must always be set before writing to the MODR.

■ I/O MAP

Address	Register				Block
	+0	+1	+2	+3	
000000н	PDR3 (R/W) XXXXXXXX	PDR2 (R/W) XXXXXXXX	-		Port Data Register
000004н	-	$\begin{aligned} & \hline \text { PDR6 (R/W) } \\ & \text { XXXXXXXX } \end{aligned}$	PDR5 (R/W) XXXXXXXX	$\begin{aligned} & \hline \text { PDR4 (R/W) } \\ & \text { XXXXXXXX } \end{aligned}$	
000008н	-			$\begin{aligned} & \hline \text { PDR8 (R/W) } \\ & -\quad \text { XXXXXX } \end{aligned}$	
$00000 \mathrm{CH}_{\mathrm{H}}$	-				
000010н	$\begin{aligned} & \text { PDRF (R/W) } \\ & - \text { - - XXXXX }^{2} \end{aligned}$	PDRE (R/W) XXXXXXXX	$\begin{aligned} & \text { PDRD (R/W) } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{aligned} & \text { PDRC (R/W) } \\ & \text { XXXXXXX } \end{aligned}$	
000014	-	$\begin{aligned} & \hline \text { PDRI (R/W) } \\ & -\mathrm{E}^{---X X X} \end{aligned}$	$\begin{gathered} \text { PDRH (R/W) } \\ \text { - - - - XXX } \end{gathered}$	$\begin{gathered} \hline \text { PDRG (R/W) } \\ --- \text { - XXXX } \end{gathered}$	
000018н	-		-	$\begin{aligned} & \text { PDRK (R/W) } \\ & \text { XXXXXXXX } \end{aligned}$	
00001拓	$\begin{aligned} & \text { SSR0 (R, R/W) } \\ & 00001000 \end{aligned}$	$\begin{aligned} & \hline \text { SIDRO/SODR0 } \\ & \text { (R,W) } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{aligned} & \text { SCRO (R/W, W) } \\ & 00000100 \end{aligned}$	$\begin{gathered} \text { SMR0 (R/W) } \\ 00000-00 \end{gathered}$	UART0
000020н	-				Reserved
000024	$\begin{aligned} & \text { SSR2 (R, R/W) } \\ & 00001000 \end{aligned}$	$\begin{gathered} \hline \text { SIDR2/SODR2 } \\ (R, W) \\ \text { XXXXXXXX } \end{gathered}$	$\begin{aligned} & \text { SCR2 (R/W, W) } \\ & 00000100 \end{aligned}$	$\begin{gathered} \text { SMR2 (R/W) } \\ 00000-00 \end{gathered}$	UART2
000028	-				Reserved
00002С ${ }_{\text {H }}$	$\begin{gathered} \text { TMRLRO (W) } \\ \mathrm{XXXXXXXX} \mathrm{XXXXXXXX} \end{gathered}$		TMR0 (R) XXXXXXXX XXXXXXXX		Reload Timer 0
000030н	-		$\begin{gathered} \text { TMCSR0 (R/W) } \\ ---0^{-} 000000000000 \end{gathered}$		
$\begin{gathered} \text { 000034н } \\ \text { to } \\ 000038 \text { н } \end{gathered}$	-				Reserved
00003C ${ }_{\text {H }}$	$\begin{gathered} \text { TMRLR2 (W) } \\ \mathrm{XXXXXXXX} \mathrm{XXXXXXXX} \end{gathered}$		$\begin{gathered} \text { TMR2 (R) } \\ X X X X X X X X X X X X X X \end{gathered}$		Reload Timer 2
000040н	-		$\begin{gathered} \text { TMCSR2 (R/W) } \\ ---000000000000 \end{gathered}$		
$\begin{gathered} \hline 000044 \mathrm{H} \\ \text { to } \\ 000048 \mathrm{H} \end{gathered}$	-				Reserved
00004CH	-	-	$\begin{gathered} \hline \text { CDCRO (R/W) } \\ 0--0000 \end{gathered}$	-	Communications prescaler 1
000050н	-	-	$\begin{gathered} \text { CDCR2 (R/W) } \\ 0--0000 \end{gathered}$	-	
$\begin{gathered} \hline 000054 \mathrm{H} \\ \text { to } \\ 000058 \mathrm{H} \end{gathered}$	-				Reserved

MB91F158

Address	Register				Block
	+0	+1	+2	+3	
00005Сн	$\begin{aligned} & \text { RCR1 (W) } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { RCRO (W) } \\ & 00000000 \end{aligned}$		$\begin{aligned} & \text { UDCRO (R) } \\ & 00000000 \end{aligned}$	8/16 bit U/D Counter
000060н	$\begin{gathered} \hline \text { CCRHO (R/W) } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { CCRLO (R/W, W) } \\ & -000 \text { X000 } \end{aligned}$	-	$\begin{gathered} \hline \text { CSRO (R/W, R) } \\ 00000000 \end{gathered}$	
000064H	$\begin{aligned} & \text { CCRH1 (R/W) } \\ & -0000000 \end{aligned}$	$\begin{gathered} \text { CCRL1 (R/W, W) } \\ -000 \times 000 \end{gathered}$	-	$\begin{aligned} & \text { CSR1 (R/W, R) } \\ & 00000000 \end{aligned}$	
000068н	$\begin{gathered} \text { IPCP1 (R) } \\ X X X X X X X X X X X X X \end{gathered}$		$\begin{gathered} \text { IPCP0 (R) } \\ \text { XXXXXXXX XXXXXXXX } \end{gathered}$		16 bit ICU
00006CH	$\begin{gathered} \text { IPCP3 (R) } \\ \text { XXXXXXXXXXXXXXX } \end{gathered}$		$\begin{gathered} \text { IPCP2 (R) } \\ x X X X X X X X X X X X X X \end{gathered}$		
000070н	-	$\begin{gathered} \text { ICS23 (R/W) } \\ 00000000 \end{gathered}$	-	$\begin{aligned} & \text { ICS01 (R/W) } \\ & 00000000 \end{aligned}$	
$\begin{gathered} \hline 000074 \mathrm{H} \\ \text { to } \\ 000078 \mathrm{H} \end{gathered}$	- -				Reserved
00007Сн	$\begin{gathered} \text { OCCP5 (R/W) } \\ \text { XXXXXXXXXXXXX } \end{gathered}$		OCCP4 (R/W) XXXXXXXX XXXXXXXX		16 bit OCU
000080н	$\begin{gathered} \text { OCCP7 (R/W) } \\ \text { XXXXXXXXXXXXXX } \end{gathered}$		$\begin{gathered} \text { OCCP6 (R/W) } \\ X X X X X X X X X X X X X \end{gathered}$		
000084н	-				Reserved
000088н	$\begin{gathered} \text { OCS6, } 7(\mathrm{R} / \mathrm{W}) \\ \text { XXX00000 } 0000 \mathrm{XX00} \end{gathered}$		$\begin{gathered} \text { OCS4, } 5(\mathrm{R} / \mathrm{W}) \\ \text { XXX00000 } 0000 \mathrm{XX00} \end{gathered}$		16 bit OCU
00008Сн	$\begin{gathered} \text { TCDT (R/W) } \\ 0000000000000000 \end{gathered}$		$\begin{gathered} \text { TCCS (R/W) } \\ 0-----00000000 \end{gathered}$		16 bit Freerun Timer
000090н	$\begin{gathered} \text { STPR0 (R/W) } \\ 0-0---- \end{gathered}$	$\begin{aligned} & \text { STPR1 (R/W) } \\ & 0-0-0-00 \end{aligned}$	$\begin{gathered} \text { STPR2 (R/W) } \\ 0000---- \end{gathered}$	-	Stop Register 0, 1, 2
000094H	GCN1 (R/W)0011001000010000		-	$\begin{gathered} \text { GCN2 (R/W) } \\ 00000000 \end{gathered}$	PPG controler
000098н	$\begin{gathered} \text { PTMR0 (R) } \\ 1111111111111111 \end{gathered}$		$\begin{gathered} \text { PCSR0 (W) } \\ \text { XXXXXXXXXXXXXX } \end{gathered}$		PPGO
00009Сн	$\begin{gathered} \text { PDUT0 (W) } \\ \text { XXXXXXXX XXXXXXX } \end{gathered}$		$\begin{aligned} & \hline \text { PCNH0 (R/W) } \\ & 0000000-1 \end{aligned}$	$\begin{aligned} & \hline \text { PCNLO (R/W) } \\ & 00000000 \end{aligned}$	
0000АОн	$\begin{gathered} \text { PTMR1 (R) } \\ 1111111111111111 \end{gathered}$		PCSR1 (W) XXXXXXXX XXXXXXXX		PPG1
0000A44	$\begin{gathered} \text { PDUT1 (W) } \\ X X X X X X X X X X X X X X \end{gathered}$		$\begin{aligned} & \hline \text { PCNH1 (R/W) } \\ & 0000000 \text { - } \end{aligned}$	$\begin{aligned} & \hline \text { PCNL1 (R/W) } \\ & 00000000 \end{aligned}$	
0000A8н	$\begin{gathered} \text { PTMR2 (R) } \\ 111111111111111 \end{gathered}$		$\begin{gathered} \text { PCSR2 (W) } \\ \mathrm{XXXXXXXXXXXXX} \end{gathered}$		PPG2
0000ACH	$\begin{gathered} \text { PDUT2 (W) } \\ \mathrm{XXXXXXXXXXXXXX} \end{gathered}$		PCNH2 (R/W) PCNL2 (R/W) $0000000-$ 00000000		
0000B0н	$\begin{gathered} \text { PTMR3 (R) } \\ 1111111111111111 \end{gathered}$		$\begin{gathered} \mathrm{PCSR} 3(W) \\ \mathrm{XXXXXXXXXXXXXX} \end{gathered}$		PPG3
0000B44	$\begin{gathered} \text { PDUT3 (W) } \\ \text { XXXXXXXXXXXXXXX } \end{gathered}$		$\begin{gathered} \text { PCNH3 (R/W) } \\ 0000000 \text { - } \end{gathered}$	$\begin{gathered} \hline \text { PCNL3 (R/W) } \\ 00000000 \end{gathered}$	

(Continued)

Address	Register				Block
	+0	+1	+2	+3	
$\begin{gathered} \hline \text { 0000В8нн } \\ \text { to } \\ 0000 \mathrm{C} 4 \text { н } \end{gathered}$	-				Reserved
0000С8н	$\begin{aligned} & \text { EIRRO (R/W) } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { ENIRO (R/W) } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { EIRR1 (R/W) } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { ENIR1 (R/W) } \\ 00000000 \end{gathered}$	Ext int
0000СС ${ }_{\text {¢ }}$	ELVR0 (R/W)0000000000000000		ELVR1 (R/W)0000000000000000		
$\begin{gathered} \text { 0000D0н } \\ \text { to } \\ 0000 \mathrm{D} 8 \mathrm{H} \end{gathered}$	-				Reserved
0000DCH	-	$\begin{gathered} \text { DACR2 (R/W) } \\ ---0.0 \end{gathered}$	$\begin{gathered} \hline \text { DACR1 (R/W) } \\ ---0-0 .-0 \end{gathered}$	$\begin{gathered} \hline \text { DACR0 (R/W) } \\ -----0 \end{gathered}$	D/A Converter
0000EOн	-	$\begin{aligned} & \text { DADR2 (R/W) } \\ & \text { XXXXXXX } \end{aligned}$	$\begin{gathered} \text { DADR1 (R/W) } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{aligned} & \text { DADRO (R/W) } \\ & \text { XXXXXXX } \end{aligned}$	
0000E4н	$\begin{gathered} \text { ADCR (R, W) } \\ 00101-\text { XX XXXXXXXX } \end{gathered}$		$\begin{gathered} \text { ADCS1 (R/W, W) } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { ADCSO (R/W) } \\ 00000000 \end{gathered}$	A/D Converter (Sequential type)
0000E8н	-			$\begin{gathered} \hline \text { AICK (R/W) } \\ 00000000 \end{gathered}$	Analog Input Control
0000ECH to 0000FOн	-				Reserved
0000F4н	$\begin{gathered} \hline \text { PCRI (R/W) } \\ ---000 \end{gathered}$	$\begin{gathered} \text { PCRH (R/W) } \\ ---000 \end{gathered}$	$\begin{aligned} & \hline \text { PCRD (R/W) } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { PCRC (R/W) } \\ & 00000000 \end{aligned}$	Pull Up Control
0000F8н	$\begin{gathered} \hline \text { OCRI (R/W) } \\ ---000 \end{gathered}$	$\begin{gathered} \text { OCRH (R/W) } \\ ----000 \end{gathered}$	-		Opendrain Control
0000FCH	$\begin{gathered} \text { DDRF (R/W) } \\ --00000 \end{gathered}$	$\begin{gathered} \hline \text { DDRE (R/W) } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { DDRD (R/W) } \\ 00000000 \end{gathered}$	$\begin{aligned} & \hline \text { DDRC (R/W) } \\ & 00000000 \end{aligned}$	Data Direction Register
000100н	-	$\begin{aligned} & \text { DDRI (R/W) } \\ & -0--000 \end{aligned}$	$\begin{gathered} \text { DDRH (R/W) } \\ ----000 \end{gathered}$	$\begin{gathered} \text { DDRG (R/W) } \\ ---0000 \end{gathered}$	
000104	-			$\begin{aligned} & \hline \text { DDRK (R/W) } \\ & 00000000 \end{aligned}$	
$\begin{gathered} \hline 000108 \text { н } \\ \text { to } \\ 0003 \text { ЕСн } \end{gathered}$	-				Reserved
0003FOH	BSDO (W)XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				Bit Search Module
0003E4н	BSD1 (R/W)$x X X X X X X X ~ X X X X X X X X ~ X X X X X X X X ~ X X X X X X X X$				
0003F8н	BSDC (W)XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
0003FCH	BSRR (R)XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				

(Continued)

Address	Register				Block
	+0	+1	+2	+3	
000400н	$\begin{gathered} \text { ICR00 (R/W) } \\ ---1111 \end{gathered}$	$\begin{gathered} \text { ICR01 (R/W) } \\ ----1111 \end{gathered}$	$\begin{gathered} \text { ICR02 (R/W) } \\ ---1111 \end{gathered}$	$\begin{gathered} \hline \text { ICR03 (R/W) } \\ ---1111 \end{gathered}$	Interruput Control Unit
000404H	$\begin{gathered} \text { ICR04 (R/W) } \\ ---1111 \end{gathered}$	$\begin{gathered} \text { ICR05 (R/W) } \\ ---1111 \end{gathered}$	$\begin{gathered} \text { ICR06 (R/W) } \\ ---1111 \end{gathered}$	$\begin{gathered} \text { ICR07 (R/W) } \\ ---1111 \end{gathered}$	
000408н	$\begin{gathered} \text { ICR08 (R/W) } \\ ---1111 \end{gathered}$	-	$\begin{gathered} \text { ICR10 (R/W) } \\ ---1111 \end{gathered}$	-	
00040Сн	$\begin{gathered} \hline \text { ICR012 (R/W) } \\ ---1111 \end{gathered}$	-	-	$\begin{gathered} \text { ICR15 (R/W) } \\ ---1111 \end{gathered}$	
000410н	-	$\begin{gathered} \hline \text { ICR17 (R/W) } \\ ---1111 \end{gathered}$	-	-	
000414H	-	$\begin{gathered} \hline \text { ICR21 (R/W) } \\ ---1111 \end{gathered}$	-	$\begin{gathered} \hline \text { ICR23 (R/W) } \\ ---1111 \end{gathered}$	
000418	-	-	$\begin{gathered} \text { ICR26 (R/W) } \\ ---1111 \end{gathered}$	ICR27 (R/W)	
00041信	$\begin{gathered} \text { ICR28 (R/W) } \\ ---1111 \end{gathered}$	$\begin{gathered} \text { ICR29 (R/W) } \\ ---1111 \end{gathered}$	$\begin{gathered} \text { ICR30 (R/W) } \\ ---1111 \end{gathered}$	-	
000420н	-	$\begin{gathered} \text { ICR33 (R/W) } \\ ---1111 \end{gathered}$	$\begin{gathered} \text { ICR34 (R/W) } \\ ---1111 \end{gathered}$	$\begin{gathered} \text { ICR35 (R/W) } \\ ---1111 \end{gathered}$	
000424H	$\begin{gathered} \text { ICR36 (R/W) } \\ ---1111 \end{gathered}$	$\begin{gathered} \text { ICR37 (R/W) } \\ ---1111 \end{gathered}$	$\begin{gathered} \text { ICR38 (R/W) } \\ ---1111 \end{gathered}$	-	
000428н	-	-	-	$\begin{gathered} \hline \text { ICR43 (R/W) } \\ ----1111 \end{gathered}$	
00042Cн	$\begin{gathered} \text { ICR44 (R/W) } \\ ---1111 \end{gathered}$	-	$\begin{gathered} \text { ICR46 (R/W) } \\ ---1111 \end{gathered}$	ICR47 (R/W)	
000430н	$\begin{gathered} \text { DICR (R/W) } \\ -----0 \end{gathered}$	$\begin{gathered} \hline \text { HRCL (R/W) } \\ ---1111 \end{gathered}$	-		Delay int
$\begin{gathered} 000434 \text { н } \\ \text { to } \\ 00047 \text { CH }^{2} \end{gathered}$	-				Reserved
000480н	$\begin{gathered} \text { RSRR/WTCR } \\ \text { (R, W) } \\ 1-\mathrm{XXX}-00 \end{gathered}$	$\begin{gathered} \text { STCR (R/W, W) } \\ 000111-- \end{gathered}$	PDRR (R/W) ---0000	CTBR (W) XXXXXXXX	Clock Control unit
000484н	$\begin{gathered} \text { GCR (R/W, R) } \\ 110011-1 \end{gathered}$	WPR (W) XXXXXXXX	-		
000488н	$\begin{aligned} & \hline \text { PTCR (R/W) } \\ & \text { 00XX0XXX } \end{aligned}$		-		PLL Control
$\begin{gathered} \hline 00048 \mathrm{C}_{\mathrm{H}} \\ \text { to } \\ 0005 \mathrm{FCH}_{\mathrm{H}} \end{gathered}$	-				Reserved
000600н	$\begin{aligned} & \text { DDR3 (W) } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { DDR2 (W) } \\ & 00000000 \end{aligned}$	-	-	Data Direction Register
000604н	-	$\begin{aligned} & \hline \text { DDR6 (W) } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { DDR5 (W) } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { DDR4 (W) } \\ & 00000000 \end{aligned}$	
000608н	-			$\begin{aligned} & \text { DDR8 (W) } \\ & -0000000 \end{aligned}$	

(Continued)
(Continued)

Note : Do not execute RMW instructions on registers having a write-only bit. RMW instructions (RMW : Read Modify Write)

AND	Rj , @Ri	OR	Rj, @Ri	EOR	$\mathrm{Rj}, @ \mathrm{i}$
ANDH	Rj, @Ri	ORH	Rj, @Ri	EORH	Rj, @Ri
ANDB	Rj, @Ri	ORB	Rj, @Ri	EORB	Rj, @Ri
BANDL	\#u4, @Ri	BORL	\#u4, @Ri	BEORL	\#u4, @Ri
BANDH	\#u4, @Ri	BORH	\#u4, @Ri	BEORH	\#u4, @Ri

() : Access

R/W : Read/Write enabled
R : Read only
W : Write only

- : Not in use

X : Undefined

- INTERRUPT FACTORS AND ASSIGNMENT OF INTERRUPT VECTORS AND RESISTERS

Factor	Interrupt No.		Interrupt level	Offset	Default TBR address
	Decimal	Hex.			
Reset	0	00	-	3FCH	000FFFFFCH
Reserved for the system	1	01	-	3F8H	000FFFFF8н
Reserved for the system	2	02	-	3F4H	000FFFFF4н
Reserved for the system	3	03	-	3F0H	000FFFFF0н
Reserved for the system	4	04	-	3ЕСн	000FFFECH
Reserved for the system	5	05	-	3E8H	000FFFFE8н
Reserved for the system	6	06	-	3E4н	000FFFFE4 ${ }_{\text {H }}$
Reserved for the system	7	07	-	3E0н	000FFFFE0н
Reserved for the system	8	08	-	3DCH	000FFFDC ${ }_{\text {H }}$
Reserved for the system	9	09	-	3D8н	000FFFD8н
Reserved for the system	10	OA	-	3D4н	000FFFPD4 ${ }_{\text {н }}$
Reserved for the system	11	OB	-	3D0н	000FFFDD ${ }_{\text {н }}$
Reserved for the system	12	OC	-	3ССн	000FFFFCC
Reserved for the system	13	OD	-	3С8н	000FFFFC8
Undefined instruction exception	14	0E	-	3С4н	000FFFFC4 ${ }_{\text {н }}$
Reserved for the system	15	OF	-	3C0н	000FFFFC0н
External interrupt 0	16	10	ICR00	3BCH	$000 \mathrm{FFFBC} \mathrm{H}^{\text {¢ }}$
External interrupt 1	17	11	ICR01	3В8н	000FFFB8
External interrupt 2	18	12	ICR02	3В4н	000FFFFB4 ${ }_{\text {¢ }}$
External interrupt 3	19	13	ICR03	3В0н	000FFFFB0н
External interrupt 4	20	14	ICR04	ЗАС ${ }_{\text {H }}$	000FFFACH
External interrupt 5	21	15	ICR05	3А8н	000FFFA8н
External interrupt 6	22	16	ICR06	3A4н	000FFFFA4 ${ }_{\text {H }}$
External interrupt 7	23	17	ICR07	3А0н	000FFFA0н
External interrupts 8-15	24	18	ICR08	39CH	000FFFF9Cн
Reserved for the system	25	19	-	398 ${ }_{\text {H }}$	000FFF98 ${ }_{\text {н }}$
UART0 (receiving complete)	26	1A	ICR10	394 ${ }_{\text {н }}$	000FFF94н
Reserved for the system	27	1B	ICR11	390н	000FFFF90н
UART2 (receiving complete)	28	1 C	ICR12	$38 \mathrm{CH}_{\mathrm{H}}$	000FFF8CH
Reserved for the system	29	1D	ICR13	388н	000FFF88н
Reserved for the system	30	1E	-	384 ${ }_{\text {н }}$	000FFFF84н
UART0 (sending complete)	31	1F	ICR15	380 H	000FFF80н
Reserved for the system	32	20	ICR16	37 CH	000 FFF 7 CH
UART2 (sending complete)	33	21	ICR17	378H	000FFF78н

(Continued)

Factor	Interrupt No.		Interrupt level	Offset	Default TBR address
	Decimal	Hex.			
Reserved for the system	34	22	ICR18	374	000FFFF74
Reserved for the system	35	23	ICR19	370 +	000FFFF70н
Reserved for the system	36	24	ICR20	36 CH	000FFFF6CH
Reload timer 0	37	25	ICR21	368н	000FFF684
Reserved for the system	38	26	ICR22	364	000FFF64 ${ }_{\text {н }}$
Reload timer 2	39	27	ICR23	360н	000FFF60н
Reserved for the system	40	28	ICR24	35 CH	000FFF55 H $^{\text {¢ }}$
A/D (sequential type)	42	2A	ICR26	354	000FFF544
PPG0	43	2 B	ICR27	350н	000FFF50н
PPG1	44	2C	ICR28	34 CH	000FFFF4CH
PPG2	45	2D	ICR29	348H	000FFF548
PPG3	46	2E	ICR30	344	000FFF44н
Reserved for the system	47	2 F	ICR31	340н	000FFFF40н
Reserved for the system	48	30	ICR32	33C	000FFFF3C
U/Dcounter 0 (compare/underflow, overflow, up-down inversion)	49	31	ICR33	338н	000FFFF38н
U/Dcounter 1 (compare/underflow, overflow, up-down inversion	50	32	ICR34	334	000FFFF34
ICU0 (Read)	51	33	ICR35	330н	000FFFF30н
ICU1 (Read)	52	34	ICR36	32 CH	000FFFF2CH
ICU2 (Read)	53	35	ICR37	328н	000FFF28н
ICU3 (Read)	54	36	ICR38	324	000FFF24 ${ }_{\text {¢ }}$
Reserved for the system	55	37	ICR39	320н	000FFF20H
Reserved for the system	56	38	ICR40	31 CH	000FFFF1CH
Reserved for the system	57	39	ICR41	318н	000FFFF18н
Reserved for the system	58	3A	ICR42	314	000FFF14
OCU4/5 (Match)	59	3B	ICR43	310н	000FFFF10н
OCU6/7 (Match)	60	3 C	ICR44	30 C н	000FFFF0CH
Reserved for the system	61	3D	-	308H	000FFFF08н
16-bit free-run timer	62	3E	ICR46	304	000FFFF04
Delay interrupt factor bit	63	3F	ICR47	300 н	000FFFF00н

(Continued)

MB91F158

(Continued)

Factor	Interrupt No.		Interrupt level	Offset	Default TBRaddress
	Decimal	Hex.			
Reserved for the system (used by REALOS*)	64	40	-	2FCH	000FFEFCH
Reserved for the system (used by REALOS*)	65	41	-	2F8н	000FFEF8\%
Reserved for the system	66	42	-	2F4н	000FFEFF4 ${ }_{\text {H }}$
Reserved for the system	67	43	-	2F0н	000FFEFOH
Reserved for the system	68	44	-	2 ECH	000FFEECH
Reserved for the system	69	45	-	2Е8н	000FFEE8H
Reserved for the system	70	46	-	2Е4н	000FFEEE4
Reserved for the system	71	47	-	2 EOH	000FFEEOH
Reserved for the system	72	48	-	2DCн	000FFEDCн
Reserved for the system	73	49	-	2D8н	000FFED8н
Reserved for the system	74	4A	-	2D4H	000FFED4н
Reserved for the system	75	4B	-	2D0н	000FFEDOH
Reserved for the system	76	4C	-	2 CCH	000FFECCH
Reserved for the system	77	4D	-	2С8н	000FFEC8H
Reserved for the system	78	4E	-	2С4	000FFEC4
Reserved for the system	79	4F	-	2 COH	000FFECOH
Used with the INT instruction	$\begin{gathered} 80 \\ \text { to } \\ 255 \end{gathered}$	$\begin{aligned} & 50 \\ & \text { to } \\ & \text { FF } \end{aligned}$	-	$\begin{gathered} 2 \mathrm{BCH} \\ \text { to } \\ 000_{\mathrm{H}} \end{gathered}$	$\begin{aligned} & \text { O00FFEBCH } \\ & \text { to } \\ & 000 \text { FFCOOH } \end{aligned}$

*: REALOS/FR uses 0X40 and 0X41 interrupts for system codes.

■ PERIPHERAL RESOURCES

1. I/O Port

(1) Port Block Diagram

This LSI is available as an I/O port when the resource associated with each pin is set not to use a pin for input/ output.
The pin level is read from the port (PDR) when it is set for input. When the port is set for output, the value in the data register is read. The same also applies to reload by read modify write.
When switching from input to output, output data is set in the data register beforehand. However, if a read modify write instruction (such as bit set) is used at that time, keep in mind that it is the input data from the pin that is read, not the latch value of the data register.

- Basic I/O Port

Figure PORT-1 Basic port block
The I/O port consists of the PDR (Port Data Register) and the DDR (Data Direction Register) . In input mode (DDR = " 0 ") \rightarrow PDR read: Reads the level of the corresponding external pin. PDR write : Writes the set value to the PDR.
In output mode (DDR = "1") \rightarrow PDR read: Reads the PDR value.
PDR write: Outputs the PDR value to the corresponding external pin.

Note : AIC controls switching between the resource and port of the analog pin (A/D).
AICK (Analog Input Control register on port-K)
The register controls whether port K should be used for analog input or as a general-purpose port.
0 : General-purpose port
1 : Analog input (A/D)

MB91F158

- I/O Port (attached with a pullup resistor)

Figure PORT-2 Port block attached with a pullup resistor

Notes : • Pullup resistor control register (PCR) R/W Controls turning the pullup resistor on/off.

0 : Pullup resistor disabled
1 : Pullup resistor enabled

- In stop mode priority is also given to the setting of the pullup resistor control register.
- This function is not available when a relevant pin is in use as an external bus pin. Do not write " 1 " to this register.

- I/O Port (attached with the open drain output function and a pullup resistor)

Figure PORT-3 Port block attached with the open drain output function and a pullup resistor
Notes: - Pullup resistor setup register (PCR) R/W
Controls turning the pullup resistor on/off.
0 : Pullup resistor disabled
1 : Pullup resistor enabled

- Open drain control register (ODCR) R/W

Controls open drain in output mode.
0 : Standard output port during output mode
1 : Open-drain output port during output mode
This register has no significance in input mode (output Hi-Z) . Input/output mode is determined by the direction register (DDR) .

- Priority is also given to the setting of the pullup resistor control register in stop mode.
- When a relevant pin is used as an external bus pin, neither function is available. Do not write " 1 " to either register.

MB91F158

(2) Register Descriptions

- Port Data Register (PDR)

PDR2	7	6	5	4	3	2	1	0
Address: 000001H	P27	P26	P25	P24	P23	P22	P21	P20

Initial value Access XXXXXXXX $\quad \mathrm{R} / \mathrm{W}$ Initial value Access XXXXXXXXв R/W Initial value Access XXXXXXXXв R/W Initial value Access XXXXXXXX R/W Initial value Access XXXXXXXX $\quad \mathrm{R} / \mathrm{W}$ Initial value Access - XXXXXXX R / W Initial value Access XXXXXXXX $\quad \mathrm{R} / \mathrm{W}$ Initial value Access XXXXXXXX $\quad \mathrm{R} / \mathrm{W}$ Initial value Access XXXXXXXXв R/W Initial value Access ---XXXXX R/W Initial value Access ----XXXX R/W Initial value Access -----XXX R/W
Address: 000016H

7	6	5	4	3	2	1	0
-	-	-	-	-	PH2	PH1	PH0

PDRI
Address: 000015H

PDRK
Address: 00001Вн

7	6	5	4	3	2	1	0
PK7	PK6	PK5	PK4	PK3	PK2	PK1	PK0

Initial value Access -----XXX R/W Initial value Access XXXXXXXX $\quad \mathrm{R} / \mathrm{W}$

PDR2 to PDRK are the I/O data registers of the I/O port. Input/output is controlled with corresponding DDR2 to DDRK.
R/W : Read/Write enabled, X : Undefined, — : Not in use

- Data Direction Register (DDR)

DDR2	7	6	5	4	3	2	1	0
Address: 000601н	P27	P26	P25	P24	P23	P22	P21	P20

DDR3	7	6	5	4	3	2	1	0
ss : 000600 ${ }_{\text {H }}$	P37	P36	P35	P34	P33	P32	P31	P30

Address: 000600н

DDR4
Address : 000607H

7	6	5	4	3	2	1	0
P47	P46	P45	P44	P43	P42	P41	P40

Address: 000606H

7	6	5	4	3	2	1	0
P57	P56	P55	P54	P53	P52	P51	P50

Address : 000605 ${ }^{\text {H }}$

7	6	5	4	3	2	1	0
P 67	P 66	P 65	P 64	P 63	P 62	P 61	P 60

Address: 00060Bн

7	6	5	4	3	2	1	0
-	P86	P85	P84	P83	P82	P81	P80

Address: 0000FFH

7	6	5	4	3	2	1	0
PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0

Address:0000FEн

7	6	5	4	3	2	1	0
PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0

Address : 0000FD

7	6	5	4	3	2	1	0
PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0

Address : 0000FCH

7	6	5	4	3	2	1	0
-	-	-	PF4	PF3	PF2	PF1	PF0

Address: 000103н

DDRH
Address: 000102H
 DDRI
Address: 000101H
 DDRK
Address: 000107н

7	6	5	4	3	2	1	0
PK7	PK6	PK5	PK4	PK3	PK2	PK1	PK0

Initial value Access 00000000 b W

Initial value Access 00000000в W

Initial value Access 00000000в W

Initial value Access 00000000в W

Initial value Access 00000000 \quad b
Initial value Access - 0000000в \quad b Initial value Access 00000000в R/W Initial value Access 00000000b R/W

Initial value Access 00000000в R/W Initial value Access -- 00000в R/W Initial value Access --- 0000в R/W

Initial value Access ----000в R/W Initial value Access -0-- 000в R/W Initial value Access 00000000в R/W

DDR2 to DDRK control the I/O direction of the I/O port by bit.
DDR $=0$: Port input
DDR = 1 : Port output
Note : DDRI's bit 6 is a test bit. Be sure to write " 0 " to the bit.
" 0 " is the value that is read.
R/W : Read/Write enabled, W : Write only, — : Not in use

MB91F158

- Pull-up Control Register (PCR)

PCR6
Address:000631н

7	6	5	4	3	2	1	0
P67	P66	P65	P64	P63	P62	P61	P60

PCRC
Address:0000F7H
PCRD
Address:0000F6H
PCRH
Address:0000F5
PCRI
Address: 0000F4 ${ }_{H}$

7	6	5	4	3	2	1	0
PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0

7	6	5	4	3	2	1	0
PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0

Initial value Access 00000000b R/W Initial value Access 00000000в R/W Initial value Access 00000000в R/W Initial value Access -----000в R/W Initial value Access -----000в R/W

PCR6 to PCRI control the pullup resistor when the corresponding I/O port is in input mode.
PCR $=0$: Pullup resistor not available in input mode
PCR $=1$: Pullup resistor available in input mode
The register has no significance in output mode (a pullup resistor not available).

- Open Drain Control Register (ODCR)

OCRH
Address : 0000F9H

-----000в R/W
OCRI
Address : 0000F8H

Initial value Access
-----000в R/W
OCRH and OCRI control open drain when the corresponding I/O port is in output mode.
OCR $=0$: Standard output port during output mode
OCR = 1 : Open drain output port during output mode
The register has no significance in input mode (output Hi-Z) .

- Analog Input Control Register (AICR)

AICK
Address : 0000EB ${ }_{H}$

7	6	5	4	3	2	1	0
PK7	PK6	PK5	PK4	PK3	PK2	PK1	PK0

The AICK controls each pin of a corresponding I/O port as follows :
AIC $=0$: Port input mode
AIC $=1$: Analog input mode
The register is reset to " 0 ."

R/W : Read/Write enabled, — : Not in use

MB91F158

2. UART

The UART is a serial I/O port for asynchronous (start and stop synchronization) communication or CLK synchronous communication. This product type contains this UART for two channels. Its features are as follows :

- Full-duplex double buffer
- Capable of asynchronous (start and stop synchronization) and CLK synchronous communication.
- Support for multiprocessor mode
- Baud rate by a dedicated baud rate generator
- Baud rate by an internal timer The baud rate can be set with a 16 -bit reload timer.
- Any baud rate can be set using an external clock.
- Error detection function (parity, framing, and overrun)
- NRZ-encoded transfer signals

MB91F158

- Block Diagram

- Register List

Address	bit 15		bit 0	Initial value
0000001 ен	SCR0			00000100в (R/W,W)
00000026H	SCR2			00000100в (R/W,W)
0000001FH		SMR0		00000-00в (R/W)
00000027 ${ }_{\text {H }}$		SMR2		00000-00в (R/W)
$0000001 \mathrm{CH}_{\text {H }}$	SSR0			00001000в (R, R/W)
00000024	SSR2			00001000в ($\mathrm{R}, \mathrm{R} / \mathrm{W}$)
0000001 Dн		SIDR0/SODR0		XXXXXXXX (R, W)
00000025 ${ }^{\text {H }}$		SIDR2/SODR2		XXXXXXXX (R, W)
0000004Ен	CDCR0			0-- 0000в (R/W)
00000052н	CDCR2			0-- 0000в (R/W)
() : Access R/W $:$ Read/Write enabled R $:$ Read only W $:$ Write only \bar{X} $:$ Not in use X : Undefined				

MB91F158

3. PPG Timer

The PPG timer can output highly accurate PWM waveforms efficiently.
This device contains four PPG timer channels and its features are as follows :

- Each channel consists of a 16-bit down counter, a 16-bit data register attached with a frequency setting buffer, a 16-bit compare register attached with a duty setting buffer, and a pin controller.
- The count clock for the 16 -bit down counter can be selected from the following four types :

Internal clocks $\phi, \phi / 4, \phi / 16$, and $\phi / 64$

- The counter value can be initialized by reset or counter borrow to "FFFFr."
- PWM output (by channel)

- Block Diagram (Entire configuration)

- Block Diagram (for one channel)

- Register List

4. 16-bit Reload Timer

The 16-bit reload timer consists of a 16-bit down counter, a 16-bit reload register, a prescaler for creating internal count clocks, and a control register.
The input clock can be selected from three internal clock types (2/8/32 machine clock divisions) .
This product type contains this 16 -bit reload timer for two channels.

- Block Diagram

MB91F158

- Register List

5. Bit Search Module

The module searches data written to the input register for " 0 " or " 1 " or a "change" and returns the detected bit position.

- Block Diagram

- Register List

MB91F158

6. $8 / 10$-bit A/D Converter (Sequential Conversion Type)

The A/D converter is a module that converts analog input voltage into a digital value. Its features are as follows :

- A minimum conversion time of $5.2 \mu \mathrm{~s} / \mathrm{ch}$. (Including sampling time at a 32 MHz machine clock)
- Contains a sample and hold circuit.
- Resolution : 10 or 8 bits selectable.
- Selection of analog input from eight channels by program Single conversion mode : Selects and converts one channel.
Continuous conversion mode : Converts a specified channel repeatedly.
Stop and convert mode : Stops after converting one channel and stands by until invoked the next time. (Conversion invoking can be synchronized.)
- Selection of an invoking factor from software, external pin trigger (falling edge) , and 16-bit reload timer (rising edge).
- Block Diagram

- Register List

			$\begin{aligned} & 00101-\mathrm{XXB}(\mathrm{~W}, \mathrm{R}) \\ & \text { XXXXXXXXB(R) } \end{aligned}$$X X X X X X X X B(R)$
000000E4H 000000E5H	ADCR		
000000E6H	ADCS1		00000000b (R/W, W)
000000E7H		ADCSO	00000000b (R/W)
000000EBH		AICK	00000000b (R/W)
() : Acce R/W: Read R : Read W: Write - : Not in X : Unde	nabled		

MB91F158

7. Interrupt Controller

The interrupt controller accepts and arbitrates interrupts.

- Block Diagram

*1 : DLY1 represents the delay interrupt module (delay interrupt generator) . (For detailed information, see section 10, "Delay Interrupt Module."
*2: INT0 is a wake-up signal for the clock controller in sleep or stop mode.
*3 : HLDCAN is a bus surrender request signal for bus masters except for the CPU.
*4 : LEVEL 4-0 are interrupt level outputs.
*5 : VCT 5-0 are interrupt vector outputs.
*6 : This product type does not have the NMI function.

- Register List

(Continued)

MB91F158

(Continued)

Address		Initial value
00000428H	ICR40	----1111 в (R/W)
00000429H	ICR41	----1111 в (R/W)
0000042Aн	ICR42	----1111 в (R/W)
0000042Bн	ICR43	----1111 в (R/W)
0000042CH	ICR44	----1111 в (R/W)
0000042D	ICR45	----1111b (R/W)
0000042Eн	ICR46	----1111 ${ }^{\text {(R/W) }}$
0000042FH	ICR47	----1111b (R/W)
00000431H	HRCL	----1111 в (R/W)
00000430H	DICR	------ 0 в (R/W)

() : Access
R/W : Read/Write enabled

- : Not in use

8. External Interrupt

The external interrupt controller controls external interrupt requests input to INT pins 0 through 15.
The level of requests to be detected can be selected from " H , " "L, " rising edge, and falling edge.

- Block Diagram

- Register List

9. Delay Interrupt Module

The delay interrupt is a module that generates task switching interrupts. The use of this module allows the software to generate/cancel interrupt requests to the CPU.
For the block diagram of the delay interrupt module, see section 8, "Interrupt Controller."

- Register List
\square

MB91F158

10. Clock Generator (Low power consumption mechanism)

The clock generator is responsible for the following functions :

- CPU clock generation (including the gear function)
- Peripheral clock generation (including the gear function)
- Reset generation and holding factors
- Standby function (including hardware standby)
- Contains PLL (multiplication circuit)

- Block Diagram

- Register List

Address	15	bit 8	Initial value	
00000480 H	RSRR/WTCH		1-XXX-00в	(R, W)
00000481H		STCR	000111--B	(R/W, W)
00000482H	PDRR		----0000в	(R/W)
00000483H		CTBR	XXXXXXXXB (W)	
00000484H	GCR		110011-1B	(R/W, R)
00000485		WPR	XXXXXXXXB (W)	
() : Access R/W : Read/Write enabled R : Read only W : Write only - : Not in use X : Undefined				

MB91F158

11. External Bus Interface

The external bus interface controls the interface between the external memory and the external I/O. Its features are as follows :

- 24-bit (16 MB) address output
- An 8/16-bit bus width can be set by chip select area.
- Inserts an automatic and programmable memory wait (for seven cycles at maximum) .
- Unused addresses/data pins are available as I/O ports.
- Support for little endian mode
- Use of a clock doubler, 32 MHz internal and 16 MHz external bus operations

- Block Diagram

- Register List

MB91F158

12. Multifunction Timer

The multifunction timer unit consists of one 16-bit free-run timer, four 16-bit output compare registers, four 16bit input capture registers, and four 16 -bit PPG timer channels. By using this function waveforms can be output based on the 16 -bit free-run timer and the input pulse width and external clock cycle can also be measured.

- Timer Components

- 16-bit free-run timer ($\times 1$)

The 16-bit free-run timer consists of a 16-bit up counter, a control register, a 16-bit compare clear register, and a prescaler. The output value of this counter is used as the basic time (base timer) for output compare and input capture.

- Output compare ($\times 4$)

The output compare consists of four 16-bit compare registers, a compare output latch, and a control register. When the 16 -bit free-run timer value agrees to the compare register value, the output level can be inverted and an interrupt can also be generated.

- Input capture ($\times 4$)

The input capture consists of capture registers corresponding to four independent external input pins and a control register. By detecting any edge of signals input from external input pins, the 16 -bit free-run timer value can be held in the capture register and an interrupt can be generated at the same time.

- 16-bit PPG timer ($\times 4$)

See the section on the PPG Timer.

- Block Diagram

- Register List

Address		Initial value XXXXXXXX (R) XXXXXXXX (R)
000068н 000069н	IPCP1	
00006Ан 00006Вн	IPCP0	XXXXXXXX (R) XXXXXXXX (R)
$00006 \mathrm{CH}_{\mathrm{H}}$ 00006Dн	IPCP3	XXXXXXXX (R) XXXXXXXX (R)
00006Ен 00006Fн	IPCP2	XXXXXXXX XXXXXXXX (R)
000071н	ICS23	00000000в (R/W)
000073н	ICS01	00000000в (R/W)
00007 C $_{\text {н }}$ 00007D	OCCP5	XXXXXXXX (R/W) XXXXXXXX (R/W)
$\begin{aligned} & 00007 \mathrm{EH}_{4} \\ & 00007 \mathrm{~F} \end{aligned}$	OCCP4	XXXXXXXX XXXXXXXX
000080н 000081н	OCCP7	XXXXXXXX (R/W) XXXXXXXX
000082н 000083н	OCCP6	XXXXXXXX (R / W) XXXXXXXX
000088н 000089н	OCS7, OCS6	XXX00000в (R/W) 0000XX00в (R/W)
00008 Ан 00008Вн	OCS5, OCS4	XXX00000в (R/W) 0000XX00в (R/W)
00008 C н 00008D	TCDT	00000000в (R/W) 00000000в (R/W)
00008Ен $00008 \mathrm{FH}_{\mathrm{H}}$	TCCS	$\begin{gathered} 0 \cdots \cdots \text { (R/W) } \\ 00000000 \text { в (R/W) } \end{gathered}$
() : Access R/W: Read/Write enabled R:Read only - Not in use X: Undefined		

MB91F158

13. FLASH Memory

The MB91F158 contains a 510-Kbyte (4 Mbits) flash memory. The sectors can be erased all at once or sector by sector and that can be written with the FR-CPU by half word (16 bits) using a single 0.3 V power supply.

The MB91F158 accomplishes the following functions by a combination of the flash memory macro and the FRCPU interface circuit :

- Functions as the CPU program/data storage memory :

When used as a ROM, the memory is accessible with a 32 -bit bus width.
Allows the CPU to read from/write to/erase the memory (automatic program algorithm*).

- Functions equivalent to the stand-alone MBM29LV400C flash memory product :

Allows a ROM programmer to read from/write to/erase the memory (automatic program algorithm*)
At this time, using the flash memory from the FR-CPU is described. For detailed information about using the flash memory from the ROM programmer, refer to the ROM programmer instruction manual.

* : Automatic program algorithm = Embedded Algorithm ${ }^{\top \mathrm{M}}$

Embedded Algorithm ${ }^{\text {TM }}$ is a trademark of Advanced Micro Devices, Inc.

- Block Diagram

MB91F158

- Memory Map

Flash memory address mapping varies between FLASH memory mode and CPU mode. Mapping in each mode is shown next.

Memory mapping in FLASH memory mode of MB91F158 :

Memory mapping in CPU mode of MB91F158A :

- Sector Address Table

< SSEL = VSs >

Sector address	Address range	Corresponding bit positions	Sector capacity
SA7	080802, 3н to 09FFFFE, FH (16 bits on LSB side)	bit15 to 0	64 Kbyte
SA8	0A0002, 3 н to OBFFFE, FH (16 bits on LSB side)	bit15 to 0	64 Kbyte
SA9	OC0002, 3 н to ODFFFE, Fн (16 bits on LSB side)	bit15 to 0	64 Kbyte
SA10	0E0002, Зн to 0EFFFE, FH (16 bits on LSB side)	bit15 to 0	32 Kbyte
SA11	0F0002, 3н to 0F3FFE, FH (16 bits on LSB side)	bit15 to 0	8 Kbyte
SA12	0F4002, 3н to 0F7FFE, FH (16 bits on LSB side)	bit15 to 0	8 Kbyte
SA13	0F8002, 3н to OFFFFFE, FH (16 bits on LSB side)	bit15 to 0	16 Kbyte
SAO	080800, $1_{\text {н }}$ to 09FFFC, D (16 bits on MSB side)	bit31 to 16	64 Kbyte
SA1	OA0000, 1 н to OBFFFC, D (16 bits on MSB side)	bit31 to 16	64 Kbyte
SA2	OC0000, $1_{\text {н }}$ to ODFFFC, Dн (16 bits on MSB side)	bit31 to 16	64 Kbyte
SA3	0E0000, 1н to OEFFFC, D (16 bits on MSB side)	bit31 to 16	32 Kbyte
SA4	OF0000, 1н to 0F3FFC, Dh (16 bits on MSB side)	bit31 to 16	8 Kbyte
SA5	OF4000, 1н to 0F7FFC, Dн (16 bits on MSB side)	bit31 to 16	8 Kbyte
SA6	OF8000, 1н to OFFFFC, Dн (16 bits on MSB side)	bit31 to 16	16 Kbyte

< SSEL = Vcc >

Sector address	Address range	Corresponding bit positions	Sector capacity
SA7	080802, Зн to 09FFFE, Fн (16 bits on LSB side)	bit15 to 0	64 Kbyte
SA8	OA0002, $3_{\text {н }}$ to OBFFFE, FH (16 bits on LSB side)	bit15 to 0	64 Kbyte
SA9	0C0002, Зн to ODFFFE, FH (16 bits on LSB side)	bit15 to 0	64 Kbyte
SA10	0E0002, Зн to 0EFFFFE, FH (16 bits on LSB side)	bit15 to 0	32 Kbyte
SA13	0F0002, 3н to 0F7FFE, FH (16 bits on LSB side)	bit15 to 0	16 Kbyte
SA11	0F8002, 3н to 0FBFFE, FH (16 bits on LSB side)	bit15 to 0	8 Kbyte
SA12	0FC002, 3 н to OFFFFFE, F_{H} (16 bits on LSB side)	bit15 to 0	8 Kbyte
SAO	080800, $1_{\text {н }}$ to 09FFFC, Dн (16 bits on MSB side)	bit31 to 16	64 Kbyte
SA1	0A0000, 1н to OBFFFC, Dн (16 bits on MSB side)	bit31 to 16	64 Kbyte
SA2	OC0000, 1н to ODFFFC, Dн (16 bits on MSB side)	bit31 to 16	64 Kbyte
SA3	OE0000, 1н to OEFFFF, Dh (16 bits on MSB side)	bit31 to 16	32 Kbyte
SA6	0F0000, 1н to 0F7FFC, Dh (16 bits on MSB side)	bit31 to 16	16 Kbyte
SA4		bit31 to 16	8 Kbyte
SA5	OFC000, $1_{\text {н }}$ to OFFFFC, Dн (16 bits on MSB side)	bit31 to 16	8 Kbyte

MB91F158

- Registers

FLCR : Status register (CPU mode)
This register indicates the FLASH memory operating status. The register controls interrupts to the CPU as well as writing to the FLASH memory.
This register is accessible only in CPU mode. Do not access this register with read modify write instructions.

0007C0H	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
	INTE	RDYINT	WE	RDY	-	-	-	LPM
	$\begin{aligned} & \text { R/W } \\ & (0) \end{aligned}$	$\begin{aligned} & \text { R/W } \\ & (0) \end{aligned}$	$\begin{aligned} & \text { R/W } \\ & (0) \end{aligned}$	$\begin{gathered} \mathrm{R} \\ \mathrm{X}) \end{gathered}$	(\bar{x})	(\bar{x})	(\bar{x})	$\begin{aligned} & \text { R/W } \\ & (0) \end{aligned}$

R/W : Read/Write enabled, R : Read only, — : Not in use, X : Undefined

FWTC : Wait register

This register controls waiting for the FLASH memory in CPU mode.
The register also controls accessing to read from the FLASH memory (33 MHz operations) at high speeds.

0007C4H

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
-	-	-	-	-	SYNC	WTC1	WTC0
W	W	W	W	W	W	R/W	R/W
(1)	(0)	(0)	(1)	(0)	(1)	(0)	(0)

R/W : Read/Write enabled, W : Write only, — : Not in use, X : Undefined

14. 8-bit D/A Converter

This block is of an 8-bit resolution, R-2R D/A converter. The block contains three D/A converter channels and each D/A control register can control output independently.
The D/A converter pin is a dedicated pin.

- Block Diagram

MB91F158

- Register List

() : Access, R/W : Read/Write enabled, - : Not in use, X : Undefined

MB91F158

15. 8/16-bit Up/Down Counters/Timers

This is the up/down counter/timer block consisting of six event input pins, two 8 -bit up/down counters, two 8 -bit reload/compare registers, and their control circuits.

The features of this module are as follows :

- Capable of counting in the (0) d - (256) d range by the 8 -bit count register. (In 16 -bit $\times 1$ operating mode, the register can count in the (0) d - (65535) d range.)
- Four count modes to choose from by the count clock.
- In timer mode the count clock can be selected from two internal clock types.
- In up/down count mode an external pin input signal detection edge can be selected.
- The phase-difference count mode is suitable for encoder counting, such as of motors. Rotation angles, rotating speeds, and so on can be counted accurately and easily by inputting the output of phases A, B, and Z.
- Two types of function to choose from for the ZIN pin. (Enabled in all modes)
- Equipped with compare and reload functions which can be used individually or in combination. When combined, these functions can count up/down at any width.
- The immediately preceding count direction can be identified by the count direction flag.
- Capable of individually controlling interrupt generation when comparison results match, at occurrence of reload (underflow) or overflow, or when the count direction changes.

MB91F158

- Block Diagram

- 8/16-bit Up/Down Counter/Timer (channel 0)

- 8/16-bit Up/Down Counter/Timer (channel 1)

MB91F158

- Register List

16. Peripheral STOP Control

This function can be used to stop the clock of unused resources in order to conserve more power.

- Register List

- ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

$$
\left(\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}=0.0 \mathrm{~V}\right)
$$

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage	Vcc	Vss - 0.3	Vss +3.5	V	
Analog supply voltage	AVcc	Vss - 0.3	Vss +3.5	V	*1
Analog reference voltage	AVRH	Vss - 0.3	$V_{\text {ss }}+3.5$	V	*1
Input voltage	V_{1}	Vss - 0.3	Vcc +0.3	V	
Analog pin input voltage	$\mathrm{V}_{\text {IA }}$	Vss - 0.3	$\mathrm{AV} \mathrm{cc}+0.3$	V	
Output voltage	Vo	Vss - 0.3	Vcc +0.3	V	
"L" level maximum output current	lot	-	10	mA	*2
"L" level average output current	lolav	-	4	mA	*3
"L" level total maximum output current	Elo	-	100	mA	
"L" level total average output current	Elolav	-	50	mA	*4
"H" level maximum output current	Іон	-	-10	mA	*2
"H" level average output current	lohav	-	-4	mA	*3
"H" level total maximum output current	$\Sigma \mathrm{loh}$	-	-50	mA	
"H" level total average output current	Elohav	-	-20	mA	*4
Power consumption	Po	-	500	mW	
Operating temperature	TA	0	+70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*1: Take care not to exceed $\mathrm{Vcc}+0.3 \mathrm{~V}$ when turning on the power, for example.
Take care also to prevent AV cc from exceeding Vcc when turning on the power, for example.
*2 : The maximum output current stipulates the peak value of a single concerned pin.
*3: The average output current stipulates the average current flowing through a single concerned pin over a period of 100 ms .
*4 : The total average output current stipulates the average current flowing through all concerned pins over a period of 100 ms .

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

$(\mathrm{V} s \mathrm{~s}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V})$

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Power supply voltage	Vcc	3.2	3.5	V	During normal operations.
		2.0	3.5		The RAM state is retained when stopped.
Analog supply voltage	AVcc	Vss +3.2	Vss + 3.5	V	
Analog reference voltage (High potential side)	AVRH	AV cc-0.3	AVcc	V	
Analog reference voltage (Low potential side)	AVRL	AVss	AV ss +0.3	V	
Operating temperature	T_{A}	0	+70	${ }^{\circ} \mathrm{C}$	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB91F158

3. DC Characteristics

$$
\left(\mathrm{V} \mathrm{cc}=3.2 \mathrm{~V} \text { to } 3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
"H" level input voltage	VIH	Input except for hysteresis input pin*	-	$\begin{aligned} & 0.65 \times \\ & V_{c c} \end{aligned}$	-	$\mathrm{Vcc}+0.3$	V	
	Vihs	Hysteresis input pin*	-	$0.8 \times \mathrm{Vcc}$	-	$\mathrm{V} \mathrm{cc}+0.3$	V	
"L" level input voltage	VIL	Input except for hysteresis input pin*	-	Vss - 0.3	-	$\begin{aligned} & 0.25 \times \\ & V_{c c} \end{aligned}$	V	
	VıLs	Hysteresis input pin*	-	Vss - 0.3	-	$0.2 \times \mathrm{Vcc}$	V	
"H" level output voltage	Vон	-	$\begin{aligned} & \mathrm{V} \mathrm{cc}=3.2 \mathrm{~V} \\ & \mathrm{loH}=4.0 \mathrm{~mA} \end{aligned}$	Vcc-0.5	-	-	V	
"L" level output voltage	VoL	-	$\begin{aligned} & \mathrm{V} \mathrm{cc}=3.2 \mathrm{~V} \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-		0.4	V	
Input leakage current	lL	-	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{cc}}=3.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{array}$	-	-	± 5	$\mu \mathrm{A}$	
Pullup resistance	Rpull	$\overline{\text { RST, pullup pin }}$	-	-	50	-	k Ω	
Power supply current	Icc	V cc	$\mathrm{Vcc}=3.3 \mathrm{~V}$	-	85	110	mA	
	Iccs	Vcc	$\mathrm{Vcc}=3.3 \mathrm{~V}$	-	60	90	mA	During sleep mode
	Ic ch	V cc	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	-	15	300	$\mu \mathrm{A}$	During stop mode
Input capacity	Cin	Other than Vcc, Vss, AVcc, AVss, and AVRH	-	-	5	15	pF	

[^0]4. Flash Memory Erase and Programming Performance
$$
(\mathrm{V} s \mathrm{~s}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V})
$$

Parameter	Value			Unit	Remarks
	Min	Typ	Max		
Sector Erase Time	-	$1^{* 1}$	$15^{* 2}$	s	Excludes programming time prior to erasure
Byte Programming Time	-	$8^{* 1}$	$3600^{* 2}$	$\mu \mathrm{~s}$	Excludes system-level overhead
Chip Programming Time	-	$4.2^{* 1}$	-	s	Excludes system-level overhead
Erase/Program Cycle	10000	-	-	cycle	

${ }^{*} 1: T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{c \mathrm{c}}=3.3 \mathrm{~V}, 10,000$ cycles
*2 : $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}, \mathrm{V} c \mathrm{c}=3.3 \mathrm{~V}, 10,000$ cycles

MB91F158

5. AC Characteristics

(1) Clock Timing Ratings
$\left(\mathrm{V} \mathrm{cc}=3.2 \mathrm{~V}\right.$ to $3.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter		Symbol	Pin name	Condition	Value		Unit	Remarks	
		Min			Max				
Clock frequency (High speed and self oscillation)			fc	X0, X1	-	10	16	MHz	Range in which self oscillation is allowed
Clock frequency (High speed and PLL in use)		-			Range in which self oscillation and the use of the PLL for external clock input are allowed				
Clock frequency (High speed an $1 / 2$ division input)		-			10	16	MHz	Range in which external clocks can be input	
Clock cycle time		tc	X0, X1	-	62.5	100	ns		
Clock pulse width		Pwh	X0, X1	-	25	-			
		Pwı		-	15	-			
Input clock rising		tor	X0, X1	-		8		+	
Input clock falling		tof		-	-	8		$(t o r+t a)$	
Internal operating clock frequency	CPU system	fcp	-	One wait is set with the wait controller.	0.625*3	32	MHz		
	Bus system	f.pb			0.625*3	$25^{* 2}$			
	Peripheral system	f.pp			0.625*3	32		Analog section excluded. *1	
					1	32		Analog section *1	
Internal operating clock cycle time	CPU system	tcp	-		31.25	1600*3	ns		
	Bus system system	tcpb			40*2	1600*3			
	Peripheral system	tcpp			31.25	1600*3		Analog section excluded. *1	
					31.25	1000		Analog section *1	

*1: The target analog section is the A/D.
*2 : The maximum external bus operating frequency allowed is 25 MHz .
*3 : The value when a minimum clock frequency of 10 MHz is input to X 0 and half a division of the oscillator circuit and the $1 / 8$ gear are in use.

MB91F158

The relationship between the X0 input and the internal clock set with the CHC/CCK1/CCK0 bit of the GCR (Gear Control Register) is as shown next.

X0 input

- Source oscillation $\times 1$ (GCR CHC bit : 0)
(a) Gear $\times 1$ internal clock CCK1/0:00
(b) Gear $\times 1 / 2$ internal clock CCK1/0:01
(c) Gear $\times 1 / 4$ internal clock CCK1/0: 10
(d) Gear $\times 1 / 8$ internal clock CCK1/0:11
- Source oscillation $\times 1 / 2$ (GCR CHC bit : 1)
(a) Gear $\times 1$ internal clock CCK1/0:00
(b) Gear $\times 1 / 2$ internal clock CCK1/0:01
(c) Gear $\times 1 / 4$ internal clock CCK1/0: 10
(d) Gear $\times 1 / 8$ internal clock CCK $1 / 0$: 11

(2) Clock Output Timing

$\left(\mathrm{V} \mathrm{cc}=3.2 \mathrm{~V}\right.$ to $3.5 \mathrm{~V}, \mathrm{~V}$ ss $=\mathrm{AV} \mathrm{Ss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Cycle time	toyc	CLK	-	tcp		ns	*1
				tcps			On using doubla
CLK $\uparrow \rightarrow$ CLK \downarrow	tснсL	CLK		tcrc/2-10	tcrc/2+10	ns	*2
CLK $\downarrow \rightarrow$ CLK \uparrow	tcıch	CLK		tcrc/2-10	tcrc/2+10	ns	* 3

*1: tcrc is a frequency for 1clock cycle including a gear cycle.
Use the doublur when CPU frequency is above 25 MHz .
*2 : Rating at a gear cycle of $\times 1$
When a gear cycle of $1 / 2,1 / 4,1 / 8$ is selected, substitute " n " in the following equations wiht $1 / 2,1 / 4,1 / 8$, respectively.

- Min : $(1-n / 2) \times$ tcyc-10
- Max : $(1-n / 2) \times$ tcyc +10

Select a gear sysle of $\times 1$ when using the doublur.
*3: Rating at a gear cycle of $\times 1$
When a gear cycle of $1 / 2,1 / 4,1 / 8$ selected, substitute " n " in the following equations wiht $1 / 2,1 / 4,1 / 8$, respectively.

- Min : $\mathrm{n} / 2 \times$ tcyc-10
- Max : $\mathrm{n} / 2 \times$ tcyc+10

Select a gear sysle of $\times 1$ when using the doublur.

MB91F158

(3) Reset Input Ratings

$$
\left(\mathrm{V} \mathrm{Vc}=3.2 \mathrm{~V} \text { to } 3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Ss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Max			
Reset input time	tRSTL	RST	-	tcp $\times 5$	-	ns	

(4) Power On Reset
$\left(\mathrm{V} \mathrm{cc}=3.2 \mathrm{~V}\right.$ to $3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Power supply rising time	$f_{\text {f }}$	Vcc	-	-	20	ms	Vcc < 0.2 V before turning up the power.
Power supply cutoff time	toff			2	-	ms	

A rapid change in supply voltage might activate power on reset.
When the supply voltage needs to be varied while operating, it is recommended to minimize fluctuations to smoothly start up the voltage.

(5) Serial I/O (CHO-4)
$\left(\mathrm{V}\right.$ cc $=3.2 \mathrm{~V}$ to $3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Ss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Serial clock cycle time	tscyc	-	Internal clock	8 tcpp	-	ns	
SCK $\downarrow \rightarrow$ SO delay time	tslov	-		-10	50	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	-		50	-	ns	
SCK $\uparrow \rightarrow$ valid SI hold time	tstix	-		50	-	ns	
Serial clock "H" pulse width	tshsL	-	External clock	4 tcpp - 10	-	ns	
Serial clock "L" pulse width	tsısh	-		4 tcpp - 10	-	ns	
SCK $\downarrow \rightarrow$ SO delay time	tstov	-		0	50	ns	
Valid SI \rightarrow SCK \uparrow	tivs	-		50	-	ns	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	-		50	-	ns	
Serial busy period	tbusy	-		-	6 tcpp	ns	
SCS $\downarrow \rightarrow$ SCK and SO delay time	tclzo	-		-	50	ns	
SCS $\downarrow \rightarrow$ SCK input mask time	tcısL	-		-	3 tcpp	ns	
SCS $\uparrow \rightarrow$ SCK and SO Hi-Z time	tchoz	-		50	-	ns	

Internal shift clock mode

External shift clock mode

MB91F158

(6) External Bus Measurement Conditions

The following conditions apply to items that are not specifically stipulated.

- AC characteristics measurement conditions

Vcc : 3.3 V

- Load condition

(7) Normal Bus Access and Read/Write Operations

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
CS0 - CS3 delay time	tchcst	$\begin{gathered} \text { CLK, } \\ \text { CS0 to CS3 } \end{gathered}$	-	-	15	ns	
CS0 - CS3 delay time	tchcsi			-	15	ns	
Address delay time	tchav	$\begin{gathered} \text { CLK, } \\ \text { A23 to A00 } \end{gathered}$		-	15	ns	
Data delay time	tchov	CLK, D31 to D16		-	15	ns	
$\overline{\mathrm{RD}}$ delay time	tclri	$\frac{\mathrm{CLK}}{\mathrm{RD}}$		-	10	ns	
$\overline{\mathrm{RD}}$ delay time	tclrh			-	10	ns	
$\overline{\text { WR0 }}$ - $\overline{\text { WR1 }}$ delay time	tcıw	$\frac{\text { CLK, }}{\text { WR0, }} \overline{\text { WR1 }}$		-	10	ns	
$\overline{\text { WR0 - } \overline{\text { WR1 }} \text { delay time }}$	tclwh			-	10	ns	
Valid address \rightarrow valid data input time	tavdv	A23 to A00, D31 to D16		-	$\begin{gathered} 3 / 2 \times \\ \operatorname{tcvc}-40 \end{gathered}$	ns	*1, *2
$\overline{\mathrm{RD}} \downarrow \rightarrow$ valid data input time	trLDV	$\begin{gathered} \overline{\mathrm{RD}}, \\ \text { D31 to D16 } \end{gathered}$		-	tcrc - 25	ns	*1
Data setup $\rightarrow \overline{\mathrm{RD}} \uparrow$ time	toser			25	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ Rdata hold time	trhdx			0	-	ns	

*1 : If the bus is extended with either automatic wait insertion or RDY input, add the (tcyc \times the number of extended cycles) time to this value.
*2 : This is the value at the time of (gear cycle $\times 1$).
When the gear cycle is set to $1 / 2,1 / 4$ or $1 / 8$, substitute " n " in the following formula with $1 / 2,1 / 4$ or $1 / 8$ respectively.
Formula: $(2-n / 2) \times$ tcyc -40

MB91F158

(8) Ready Input Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
RDY setup time \rightarrow CLK \downarrow	trovs	RDY CLK	-	20	-	ns	
CLK $\downarrow \rightarrow$ RDY hold time	trovh	RDY CLK		0	-	ns	

MB91F158

(9) Hold Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
BGRNT delay time	tchbal	$\frac{\text { CLK }}{\text { BGRTT }}$		-	10	ns	
$\overline{\text { BGRNT delay time }}$	тснвян			-	10	ns	
Pin floating $\rightarrow \overline{\text { BGRNT }} \downarrow$ time	txhaL	$\overline{\text { BGRNT }}$		tcre - 10	tcrc +10	ns	
$\overline{\text { BGRNT } \uparrow \rightarrow \text { Pin valid time }}$	thaнv			tovc - 10	tcyc +10	ns	

Note : More than one cycle exist after BRQ is fetched and before $\overline{B G R N T}$ changes.

6. A/D Converter Electrical Characteristics

$$
\left(\mathrm{V} \mathrm{cc}=3.2 \mathrm{~V} \text { to } 3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)
$$

Parameter		Symbol	Pinname	Condition	Value			Unit	Remarks	
		Min			Typ	Max				
Resolution			-	-		-	-	10	Bit	
Conversion time		-	-		5.2	-	-	$\mu \mathrm{S}$		
Comparison time		-	-	-	-	-	0.2	ms		
Total error		-	-		-	-	± 4.0	LSB		
Linearity error		-	-	$\mathrm{AVcc}=3.3 \mathrm{~V}$, AVRH $=3.3 \mathrm{~V}$	-	-	± 3.5	LSB		
Differential linearity error		-	-		-	-	± 2.0	LSB		
Zero transition error		Vот	AN0 to AN7	$\mathrm{AV}_{\mathrm{cc}}=3.3 \mathrm{~V}$,	AVss - 1.5	AVss +0.5	AV ss +2.5	LSB		
Full-scale transition error		Vfst	ANO to AN7	$\mathrm{AV}_{\mathrm{RH}}=3.3 \mathrm{~V}$	$\mathrm{AV}_{\text {RH }}-5.5$	$\mathrm{AV}_{\text {RH }}-1.5$	$\mathrm{AV}_{\text {RH }}+0.5$	LSB		
Analog input current		Iain	ANO to AN7		-	0.1	10	$\mu \mathrm{A}$		
Analog input voltage		Vain	ANO to AN7		AVss	-	$\mathrm{AV}_{\text {RH }}$	V		
Reference voltage		$\mathrm{AV}_{\text {RH }}$	AVRH	-	-	-	AVcc	V		
Supply current	Conversion in operation	IA	AVcc	$\mathrm{AV} \mathrm{cc}=3.3 \mathrm{~V}$	-	3.0	5.0	mA		
	Conversion stopped	ІАн			-	-	5.0	$\mu \mathrm{A}$		
Reference voltage supply current	Conversion in operation	IR	AVRH	$\begin{aligned} & \mathrm{AV} \mathrm{cc}=3.3 \mathrm{~V}, \\ & \mathrm{AVRH}=3.3 \mathrm{~V} \end{aligned}$	-	2.0	3.0	mA		
	Conversion stopped	Іrн			-	-	10	$\mu \mathrm{A}$		
Interchannel variation		-	ANO to AN7	-	-	-	4	LSB		

Notes : • The smaller the |AVRH| is, the greater the error is in general.

- The external circuit output impedance of analog input should be used in compliance with the following requirements :
External circuit output impedance $\leq 2(\mathrm{k} \Omega)$
If the output impedance of the external circuit is too high, an analog voltage sampling duration shortage might occur. $($ Sampling duration $=1.41 \mu \mathrm{~s}: @ 32 \mathrm{MHz}$)

MB91F158

- A/D Converter Glossary
- Resolution
: Analog changes that are identifiable by the A/D converter.
- Linearity error
: The deviation of the straight line connecting the zero transition point (00 $00000000 \longleftrightarrow 000000$ 0001) with the full-scale transition point (11 1111 1110 $\longleftrightarrow 111111$ 1111) from actual conversion characteristics.
- Differential linearity error : The deviation of input voltage needed to change the output code by one LSB from the theoretical value.
- Total error
: The difference between actual and theoretical conversion values including a zero transition/full-scale transition/linearity error.

(Continued)
(Continued)

Linearity error

Differential linearity error

$\begin{array}{r}\text { Linearity error of digital } \\ \text { output } N\end{array}=\frac{\mathrm{V}_{\mathrm{NT}}-\left\{1 \mathrm{LSB} \times(\mathrm{N}-1)+\mathrm{V}_{\text {OT }\}}\right.}{1 \mathrm{LSB}}$ [LSB]
$\begin{array}{r}\text { Differential linearity error } \\ \text { of digital output } N\end{array}=\frac{V(N+1) T-V_{N T}}{1 \mathrm{LSB}}-1$
[LSB]

$$
1 \mathrm{LSB}=\frac{\mathrm{V}_{\text {FST }}-\mathrm{V}_{\text {OT }}}{1022} \quad[\mathrm{~V}]
$$

Vот : Voltage at which digital output changes from (000) н to (001) н.
$V_{\text {FST }}$: Voltage at which digital output changes from (3FE) н to (3FF) н.

7. D/A Converter Electrical Characteristics

$\left(\mathrm{V} \mathrm{cc}=3.2 \mathrm{~V}\right.$ to $3.5 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=\mathrm{AVss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Resolution	-	-	-	-	-	8	Bit	
Differential linearity error	-	-	-	-	-	1	LSB	
Conversion time	-	-	-	-	-	20	$\mu \mathrm{s}$	*
Analog output impedance	-	-	-	-	29	-	$\mathrm{k} \Omega$	

*: CL = 20 pF

MB91F158

EXAMPLE CHARACTERISTICS

(1) "H" level output voltage
" H " level output voltage vs. Power supply voltage

(3) Pull-up resistance

(2) "L" level output voltage
"L" level output voltage vs. Power supply voltage

(4) Power supply current

(5) Power supply at sleeping

(7) A/D conversion power supply (32 MHz)

(6) Power supply at stopping

Power supply (Stopping) vs. Voltage

(8) A/D conversion reference voltage supply current (32 MHz)
A/D conversion reference voltage supply current vs. Voltage

(9) A / D conversion reference voltage supply current per 1 ch (32 MHz)
A/D conversion voltage supply current per 1 ch vs. Power supply voltage

MB91F158

■ ORDERING INFORMATION

Part number	Package	Remarks
MB91F158PFF-G	120-pin plastic LQFP (FPT-120P-M05)	

PACKAGE DIMENSION

120-pin plastic LQFP (FPT-120P-M05)

Note 1) *: These dimensions do not include resin protrusion.
Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include tie bar cutting remainder.

© 2003 FUJITSU LIMTED F120006S-C.4.5
Dimensions in mm (inches)
Note: The values in parentheses are reference values.

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

[^0]: *: Refer to "■ I/O CIRCUIT TYPE".

